TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 352, Number 6, Pages 2569–2579 S 0002-9947(00)02398-9 Article electronically published on March 7, 2000

ON SYZYGIES OF ABELIAN VARIETIES

ELENA RUBEI

ABSTRACT. In this paper we prove the following result: Let X be a complex torus and M a normally generated line bundle on X; then, for every $p \geq 0$, the line bundle M^{p+1} satisfies Property N_p of Green-Lazarsfeld.

1. Introduction

In this paper we prove a new result on syzygies of abelian varieties; precisely, the problem we are considering is the following: let X be a complex torus, L a very ample line bundle on X and φ_L the associated map; we are concerned with the degree of the equations defining $\varphi_L(X)$, the degree of the syzygies among them and the degree of higher syzygies. In particular, here we examine the case where $L = M^l$ where M is a normally generated line bundle.

To review precisely the statements of the known results on syzygies of abelian varieties and to formulate precisely our theorem, we have to recall Green-Lazarsfeld's definition of Property N_p (see [Gr1], [G-L], [Gr2], [Laz2], [E-L]): let Y be a smooth complex projective variety of dimension n and let L be a very ample line bundle on Y defining an embedding $Y \subset \mathbf{P} = \mathbf{P}(H^0(Y, L)^*)$; set $S = S(L) = Sym^*H^0(L)$, the homogeneous coordinate ring of the projective space \mathbf{P} , and consider the graded S-module $G = G(L) = \bigoplus_d H^0(Y, L^d)$. Let E_* be a minimal graded free resolution of G (that is, an exact sequence with E_i free S-modules and such that the matrices of homogenous polynomials giving the maps $E_i \longrightarrow E_{i-1}$ has no nonzero constant entries); the line bundle L satisfies Property N_p ($p \in \mathbf{N}$) if and only if

$$E_0 = S,$$

$$E_i = \bigoplus S(-i-1) \text{ for } 1 \le i \le p.$$

(Thus L satisfies Property N_0 if and only if $Y \subset \mathbf{P}(H^0(L)^*)$ is projectively normal, that is, L is normally generated; L satisfies Property N_1 if and only if L satisfies Property N_0 and the homogeneous ideal I of $Y \subset \mathbf{P}(H^0(L)^*)$ is generated by quadrics; L satisfies Property N_2 if and only if L satisfies Property N_1 and the module of syzygies among quadratic generators $Q_i \in I$ is spanned by relations of the form $\sum L_i Q_i = 0$, where L_i are linear polynomials; and so on.)

In 1966 Mumford proved that, if M is an ample line bundle on a complex torus X and $l \geq 4$, then the ideal of $\varphi_{M^l}(X)$ is generated by quadrics ([Mum2]) and in

Received by the editors November 30, 1997 and, in revised form, March 29, 1998.

²⁰⁰⁰ Mathematics Subject Classification. Primary 14K05.

Key words and phrases. Abelian varieties, syzygies.

This research was carried through in the realm of the AGE Project HCMERBCHRXCT940557 and of the ex-40 MURST Program "Geometria algebrica".

1978 Sekiguchi proved a similiar result for l=3 ([Se]). In 1989 Kempf proved again and generalized these results in [Ke]; precisely the following theorem holds (part c) was proved by Lange and Birkenhake using Kempf's proof; see 7.4.1, [L-B]):

Theorem 1 (Mumford-Sekiguchi-Kempf). Let X be a complex torus. If A is an ample line bundle on X we denote I(A) the ideal of $\varphi_A(X)$. Let M be an ample line bundle on X:

- a) if $l \geq 4$, the ideal $I(M^l)$ is generated by forms of degree 2,
- b) let l = 3, the ideal $I(M^3)$ is generated by forms of degrees 2 and 3,
- c) (Lange-Birkenhake) let l=2; if M^2 is normally generated, then the ideal $I(M^2)$ is generated by forms of degrees 2, 3 and 4.

In 1984 Green proved that if X is a Riemann surface of genus g and L is a holomorphic line bundle on X of degree 2g+1+p, then L satisfies Property N_p (see [Gr1] and [Gr2]). Thus, if M is an ample line bundle on an elliptic curve, then M^{p+3} satisfies Property N_p and in [Laz2] Lazarsfeld formulated the following conjecture:

Conjecture 2 (Lazarsfeld). If M is an ample line bundle on a complex torus, then, for every $p \ge 0$, the line bundle M^{p+3} satisfies Property (N_p) .

In 1989 Kempf proved a weaker result (see [Ke]):

Theorem 3 (Kempf). Let M be an ample line bundle on a complex torus X. If $l \geq 4$, then M^l satisfies Property $N_{\lceil \frac{l-2}{2} \rceil}$.

In 1993 Ein and Lazarsfeld proved the following theorem (see [E-L]):

Theorem 4 (Ein-Lazarsfeld). Let Y be a smooth complex projective variety of dimension n; let A be a very ample line bundle on Y, and B a numerically effective line bundle on Y; then $K_Y \otimes A^{n+1+p} \otimes B$ satisfies Property N_p .

If $(Y, A, B) \neq (\mathbf{P}^n, \mathcal{O}_{\mathbf{P}^n}(1), \mathcal{O}_{\mathbf{P}^n})$ and $p \geq 1$, then $K_Y \otimes A^{n+p} \otimes B$ satisfies Property N_p .

Thus, if M is a very ample line bundle on a complex torus of dimension n, then M^{n+p} satisfies Property N_p .

In this paper, using the ideas of Kempf's paper [Ke], by a patient adaptation, we prove another theorem on syzygies of abelian varieties:

Theorem 5. If M is a normally generated line bundle on a complex torus X, then, for every $p \ge 0$, the line bundle M^{p+1} satisfies Property N_p .

Since there is a result on normal generation of primitive line bundles (Lazarsfeld's theorem on projective normality of (1,d)-abelian surfaces; see [Laz1]), Theorem 5 may actually be useful (see Remark 18).

Notation and Definitions. We collect here some notation and standard definitions that we will use throughout the paper.

- φ_L . If L is a line bundle on a complex manifold Y, φ_L is the rational map associated to L.
- A line bundle L on a complex manifold Y is called **normally generated** if it is very ample and $\varphi_L(Y)$ is projectively normal. We have that L is normally generated if and only if it is ample and the natural maps $S^nH^0(Y,L) \longrightarrow H^0(Y,L^n)$ are surjective for all $n \geq 2$ (see [Mum1], p. 38 and [L-B], Chapter 7, §3).

If X is a complex torus of dimension g, then

- t_x is the translation on X by the point x;
- \hat{X} is the dual complex torus of X; it is isomorphic to $Pic^0(X)$;
- \mathcal{P} denotes the Poincaré bundle on $X \times \hat{X}$;
- ϕ_L is the homomorphism $X \longrightarrow \hat{X}$, $x \mapsto t_x^*L \otimes L^{-1}$, where L is a line bundle on X;
- K(L) is the kernel of ϕ_L ; it depends only on H, the first Chern class of L, thus we denote K(L) also by K(H); if L is nondegenerate, then K(L) is a finite group isomorphic to $(\mathbf{Z}/d_1 \oplus \oplus \mathbf{Z}/d_g)^2$ with $d_i|d_{i+1}$; we say that L is of **type** $(d_1,...,d_g)$;
- $W \cdot W'$: if W is a vector subspace of $H^0(X, E)$ and W' is a vector subspace of $H^0(X, E')$ (E and E' line bundles on X), $W \cdot W'$ is the image of $W \otimes W'$ under the multiplication map; we often omit \cdot .
- π : if we have a product of tori, we use the notation: π_i is the projection on the *i*th factor and π . is the projection on \cdot .

2. Some recalls

First we recall Mumford's lemma (see [Mum1] or [L-B], Chapter 7, Lemma 3.3) and the following remark and proposition.

Lemma 6 (Mumford). Let A and B be two ample line bundles on a complex torus X. For every nonempty open subset U of \hat{X} , we have

$$\sum_{P \in U} H^0(X, A \otimes P) \cdot H^0(X, B \otimes P^{-1}) = H^0(X, A \otimes B).$$

As Kempf observed in [Ke], Mumford's lemma can be interpreted in this way: a linear functional λ on $H^0(A \otimes B)$ is determined by the family $\{\lambda_P\}_{P \in U}$, where λ_P is the linear functional on $H^0(X, A \otimes P) \otimes H^0(X, B \otimes P^{-1})$ given by the composition of the multiplication with λ .

Remark 7 (see [Gr2]). Let V be a complex vector space of dimension r+1, let $S=\bigoplus_{q\geq 0} Sym^q(V)$ and $G=\bigoplus_q G_q$ a finitely generated graded S-module. Let

$$0 \longrightarrow E_n \longrightarrow E_{n-1} \longrightarrow \dots \longrightarrow E_0 \longrightarrow G \longrightarrow 0$$

be a minimal free resolution of G, that is, an exact sequence with E_i free S-modules and such that the matrices of homogenous polynomials giving the maps $E_i \longrightarrow E_{i-1}$ has no nonzero constant entries. Write $E_p = \bigoplus_q (B_{p,q} \otimes S(-q))$ with $B_{p,q}$ vector spaces on \mathbb{C} . See \mathbb{C} as the S-module $S/\bigoplus_{q\geq 1} Sym^q(V)$. Then

$$Tor_p^S(G, \mathbf{C})_q \simeq B_{p,q}.$$

Proposition 8 (Koizumi [Ko]). Let A and A' be two algebraically equivalent ample line bundles on a complex torus X. The multiplication map $H^0(X, A^m) \otimes H^0(X, A'^n) \longrightarrow H^0(X, A^m \otimes A'^n)$ is surjective for all $m \geq 3$ and $n \geq 2$.

Now we recall some facts, definitions and propositions of Kempf's paper [Ke].

Definition 9 (Kempf). For any A_i 's ample line bundles on a complex torus X, let $K(A_1) = H^0(X, A_1)$ and, for n > 1, define $K(A_1, ..., A_n)$ inductively by the following exact sequence:

$$0 \to K(A_1, ..., A_n) \to K(A_1, A_3, ..., A_n) \otimes H^0(X, A_2) \to K(A_1 \otimes A_2, A_3, ..., A_n).$$

To follow completely Kempf's notations, we denote $K(A_1, A_2)$ by $R(A_1, A_2)$ (= $\ker(H^0(A_1) \otimes H^0(A_2) \longrightarrow H^0(A_1 \otimes A_2))$).

In the sequel $K(A_1, A_3, ..., A_n) \cdot H^0(X, A_2)$ will denote the image of the multiplication map $K(A_1, A_3, ..., A_n) \otimes H^0(X, A_2) \longrightarrow K(A_1 \otimes A_2, A_3, ..., A_n) \subset H^0(A_1 \otimes A_2) \otimes H^0(A_3) \otimes ... \otimes H^0(A_n)$; we often omit \cdot .

Notation 10 (Kempf). In the remainder of this section, following [Ke], we use the following notation: let X be a complex torus of dimension g; fix an ample line bundle M on X; l_i , $i \in \mathbb{N}$, will denote positive integers and L_i will denote a line bundle algebraically equivalent to M^{l_i} .

Observe that, if A is a line bundle on X, since $H^0((\pi_X^*A\otimes \mathcal{P})|_{X\times\{P\}})=H^0(A\otimes P)$ is of constant dimension $\forall P\in\hat{X}$, then the sheaf $\pi_{\hat{X}}_*(\pi_X^*A\otimes \mathcal{P})$ on \hat{X} is locally free and its fibre over $P\in\hat{X}$ is $H^0(A\otimes P)$, by Grauert's Theorem (see [Ha] Theorem 12.9 Chapter 3). Analogously the sheaf $\pi_{\hat{X}}_*(\pi_X^*A\otimes \mathcal{P}^{-1})$ on \hat{X} is locally free and its fibre over $P\in\hat{X}$ is $H^0(A\otimes P^{-1})$.

Consider the following map:

$$\pi_{\hat{X}_*}(\pi_X^*L_1\otimes\mathcal{P})\otimes\pi_{\hat{X}_*}(\pi_X^*L_2\otimes\mathcal{P}^{-1})\longrightarrow H^0(X,L_1\otimes L_2)\otimes_{\mathbf{C}}\mathcal{O}_{\hat{X}}$$

(given by the composition of the maps

$$\pi_{\hat{X}} * (\pi_X^* L_1 \otimes \mathcal{P}) \otimes \pi_{\hat{X}} * (\pi_X^* L_2 \otimes \mathcal{P}^{-1}) \longrightarrow \pi_{\hat{X}} * \pi_X^* (L_1 \otimes L_2)$$

and

$$\pi_{\hat{X}_*}\pi_X^*(L_1\otimes L_2)\longrightarrow H^0(X,L_1\otimes L_2)\otimes_{\mathbf{C}}\mathcal{O}_{\hat{X}}.$$

This map induces a map:

$$m: H^0(X, L_1 \otimes L_2)^{\vee} \longrightarrow H^0(\hat{X}, (\pi_{\hat{X}_*}(\pi_X^* L_1 \otimes \mathcal{P}) \otimes \pi_{\hat{X}_*}(\pi_X^* L_2 \otimes \mathcal{P}^{-1}))^{\vee}).$$

Proposition 11 (Kempf). i) The map

$$m: H^0(X, L_1 \otimes L_2)^{\vee} \longrightarrow H^0(\hat{X}, (\pi_{\hat{X}_*}(\pi_X^*L_1 \otimes \mathcal{P}) \otimes \pi_{\hat{X}_*}(\pi_X^*L_2 \otimes \mathcal{P}^{-1}))^{\vee})$$

is an isomorphism.

ii)
$$H^i(\hat{X}, (\pi_{\hat{X}*}(\pi_X^*L_1 \otimes \mathcal{P}) \otimes \pi_{\hat{X}*}(\pi_X^*L_2 \otimes \mathcal{P}^{-1}))^{\vee}) = 0$$
 for $i \geq 1$.

Arguing exactly as in Proposition 4 of [Ke], we have:

Proposition 12 (Kempf). If $H^0(L_1 \otimes P) \otimes H^0(L_3) \longrightarrow H^0(L_1 \otimes P \otimes L_3)$ is surjective $\forall P \in Pic^0(X)$ and $H^0(L_1 \otimes L_2) \otimes H^0(L_3) \longrightarrow H^0(L_1 \otimes L_2 \otimes L_3)$ is surjective, then

$$\sum_{P \in Pic^{0}(X)} R(L_{1} \otimes P, L_{3}) \cdot H^{0}(L_{2} \otimes P^{-1}) = R(L_{1} \otimes L_{2}, L_{3}).$$

We reproduce the proof here for later use.

Proof. One inclusion is obvious:

$$\sum_{P \in \hat{X}} R(L_1 \otimes P, L_3) \cdot H^0(L_2 \otimes P^{-1}) \subset R(L_1 \otimes L_2, L_3).$$

We want to show the other one. It suffices to show that $(\sum_{P \in Pic^0(X)} R(L_1 \otimes P, L_3) \cdot H^0(L_2 \otimes P^{-1}))^{\perp}$ in $(H^0(L_1 \otimes L_2)H^0(L_3))^{\vee}$ is contained in $R(L_1 \otimes L_2, L_3)^{\perp}$.

For every $P \in \hat{X}$, we have the following commutative diagram:

The columns are exact by the hypotheses.

To see that $(\sum_{P\in Pic^0(X)}R(L_1\otimes P,L_3)\cdot H^0(L_2\otimes P^{-1}))^{\perp}$ in $(H^0(L_1\otimes L_2)\otimes H^0(L_3))^{\vee}$ is contained in $R(L_1\otimes L_2,L_3)^{\perp}$ is equivalent to seeing that any element of $(H^0(L_1\otimes L_2)\otimes H^0(L_3))^{\vee}$ inducing a linear form on $H^0(L_1\otimes L_3\otimes P)\otimes H^0(L_2\otimes P^{-1})$ induces a linear form on $H^0(L_1\otimes L_2\otimes L_3)$ and this is true by Proposition 11. \square

Definition 13 (Kempf). Let S be a graded ring and G a finitely generated graded S-module and $k = S/\bigoplus_{n\geq 1} S_n$. Define $d(G) = min \{j \mid G \text{ is generated by the union of the } G_d \text{ 's for } d \leq j\}$ (thus d(G) is the smallest number such that $G \otimes_S k$ is zero in degree > d(G)).

Define
$$T^1(G) = \ker(G(-1) \otimes_k S_1 \longrightarrow G)$$
.
Define $T^j(G) = T^{j-1}(T^1(G))$ and $T^0(G) = G$.
Define $d^j(G) = d(T^j(G))$.

Lemma 14 (Kempf). Let S be a graded ring and G a finitely generated graded S-module and $k = S/\bigoplus_{n\geq 1} S_n$. If $q > i - j + d(T^j(G))$ for all $0 \leq j \leq i$, then $Tor_i^S(G,k)$ is zero in degree q.

3. Two new lemmas

To prove Theorem 5 we need the following two lemmas.

Lemma 15. Let A and A' be two algebraically equivalent normally generated line bundles on a complex torus X and $m, n \in \mathbb{N}$. If $m \geq 2$ and $n \geq 1$, then

$$H^0(A^m) \cdot H^0(A'^n) = H^0(A^m \otimes A'^n).$$

Proof. Observe that the set $U := \{P \in Pic^0(X) \text{ s.t. } H^0(A \otimes P^{-1})H^0(A'^n) = H^0(A \otimes A'^n \otimes P^{-1})\}$ is nonempty, since A and A' are normally generated, and open, since, as we have already observed, for any line bundle L on X, the vector spaces $H^0(L \otimes P)$ $P \in \hat{X}$ form a vector bundle on \hat{X} .

Applying twice Mumford's Lemma, we have

$$H^{0}(A^{m})H^{0}(A'^{n}) = \sum_{P \in U} H^{0}(A^{m-1} \otimes P)H^{0}(A \otimes P^{-1})H^{0}(A'^{n})$$

$$= \sum_{P \in U} H^{0}(A^{m-1} \otimes P)H^{0}(A \otimes A'^{n} \otimes P^{-1}) = H^{0}(A^{m} \otimes A'^{n})$$
for $m \ge 2$ and $n \ge 1$.

Lemma 16. Let A, A' and A'' be three algebraically equivalent normally generated line bundles on a complex torus X and $\alpha, \beta, \gamma \in \mathbf{N}$. If we are in one of the following three cases:

1)
$$\alpha \geq 2$$
, $\beta \geq 2$, $\gamma \geq 2$,

2)
$$\alpha \geq 3$$
, $\beta = 1$, $\alpha + \gamma \geq 5$,

3)
$$\alpha \ge 3$$
, $\gamma = 1$, $\alpha + \beta \ge 5$,

then

$$R(A^{\alpha}, A'^{\beta}) \cdot H^{0}(A''^{\gamma}) = R(A^{\alpha} \otimes A''^{\gamma}, A'^{\beta}).$$

Proof. Let $\alpha, \beta, \gamma, l \in \mathbb{N}$ and $\beta, l, \alpha - l \ge 1$.

$$H^0(A^{\alpha-l}\otimes P)\otimes H^0(A'^{\beta})\longrightarrow H^0(A^{\alpha-l}\otimes P\otimes A'^{\beta})$$

for all $P \in Pic^0(X)$, and

$$H^0(A^{\alpha}) \otimes H^0({A'}^{\beta}) \longrightarrow H^0(A^{\alpha} \otimes {A'}^{\beta})$$

are surjective (we call this condition (a)), then, by Proposition 12, we have

$$R(A^{\alpha}, A'^{\beta})H^{0}(A''^{\gamma}) = \sum_{P \in Pic^{0}(X)} R(A^{\alpha-l} \otimes P, A'^{\beta})H^{0}(A^{l} \otimes P^{-1})H^{0}(A''^{\gamma}).$$

If

$$H^0(A^l \otimes P^{-1}) \otimes H^0(A''^{\gamma}) \longrightarrow H^0(A^l \otimes P^{-1} \otimes A''^{\gamma})$$

for all $P \in Pic^0(X)$, is surjective (we call this condition (b)), then we have

$$\begin{split} \sum_{P \in Pic^0(X)} R(A^{\alpha - l} \otimes P, A'^{\beta}) H^0(A^l \otimes P^{-1}) H^0(A''^{\gamma}) \\ &= \sum_{P \in Pic^0(X)} R(A^{\alpha - l} \otimes P, A'^{\beta}) H^0(A^l \otimes A''^{\gamma} \otimes P^{-1}). \end{split}$$

If

$$H^0(A^{\alpha-l}\otimes P)\otimes H^0({A'}^{\beta})\longrightarrow H^0(A^{\alpha-l}\otimes P\otimes {A'}^{\beta})$$

for all $P \in Pic^0(X)$, and

$$H^0(A^{\alpha} \otimes A''^{\gamma}) \otimes H^0(A'^{\beta}) \longrightarrow H^0(A^{\alpha} \otimes A''^{\gamma} \otimes A'^{\beta})$$

are surjective (we call this condition (c)), then, by Proposition 12, we have

$$\sum_{P \in Pic^{0}(X)} R(A^{\alpha - l} \otimes P, A'^{\beta}) H^{0}(A^{l} \otimes A''^{\gamma} \otimes P^{-1}) = R(A^{\alpha} \otimes A''^{\gamma}, A'^{\beta}).$$

By Lemma 15, if we are in one of the following four cases:

1)
$$\alpha \geq 2, \beta \geq 2, \gamma \geq 2, l = 1,$$

2)
$$\alpha \ge 4$$
, $\beta = 1$, $\gamma = 1$, $l = 2$,

2')
$$\alpha \ge 3, \beta = 1, \gamma \ge 2, \alpha + \gamma \ge 5, l = 1$$

3)
$$\alpha \ge 3, \ \gamma = 1, \ \alpha + \beta \ge 5, \ l = 2,$$

then (a), (b) and (c) hold. Thus we conclude the proof.

4. The proof of Theorem 5 and two remarks

The crucial step to prove Theorem 5 is the following proposition, which is analogous to Theorem 17 in [Ke].

Proposition 17. Let M be a normally generated line bundle on a complex torus X. We again use Notation 10, that is the l_i 's, $i \in \mathbb{N}$, denote positive integers and L_i denotes a line bundle algebraically equivalent to M^{l_i} .

- a) Let $m \geq 3$. If $l_1 \geq m-1,..., l_m \geq m-1$, then $K(L_1,L_3,...,L_m) \otimes H^0(X,L_2) \longrightarrow K(L_1 \otimes L_2,L_3,...,L_m)$ is surjective.
- b) Let $m \ge 1$. If $l_1 \ge m,..., l_m \ge m$, then $K(L_1,...,L_m)$ form a vector bundle on the appropriate component of $Pic(X)^m$.
- c) Let $m \geq 4$. If $l_1 \geq m-2$, $l_2 \geq 1$ and $l_3 \geq m-1$, ..., $l_m \geq m-1$, then $K(L_1 \otimes L_2, L_3, ..., L_m) = \sum_{P \in \hat{X}} K(L_1 \otimes P, L_3, ..., L_m) \cdot H^0(L_2 \otimes P^{-1})$. d) Let $m \geq 2$. Let $l_1 \geq 2m-1$, $l_2 \geq 1$, and, if $m \geq 3$, $l_3 \geq m$, ..., $l_m \geq m$ and
- d) Let $m \geq 2$. Let $l_1 \geq 2m-1$, $l_2 \geq 1$, and, if $m \geq 3$, $l_3 \geq m$, ..., $l_m \geq m$ and suppose the family of vector spaces $K(L_1 \otimes P, L_3, ..., L_m)$, $P \in \hat{X}$, forms a vector bundle on \hat{X} , we call the corresponding sheaf \mathcal{F}_{m-1} . Then we have
 - i) an isomorphism

$$K(L_1 \otimes L_2, L_3, ..., L_m)^{\vee} = H^0(\hat{X}, (\mathcal{F}_{m-1} \otimes \pi_{\hat{X}_*}(\pi_X^* L_2 \otimes \mathcal{P}^{-1}))^{\vee}).$$

ii)
$$H^{i}(\hat{X}, (\mathcal{F}_{m-1} \otimes \pi_{\hat{X}_{x}}(\pi_{X}^{*}L_{2} \otimes \mathcal{P}^{-1}))^{\vee}) = 0 \text{ if } i \geq 1.$$

Proof. Consider the following four statements depending on the natural number m:

- Statement A(m): If $l_1 \geq m-1$, ..., $l_m \geq m-1$, then $K(L_1,L_3,...,L_m) \otimes H^0(X,L_2) \longrightarrow K(L_1 \otimes L_2,L_3,...,L_m)$ is surjective.
- Statement B(m): If $l_1 \geq m,..., l_m \geq m$, then $K(L_1,...,L_m)$ form a vector bundle on the appropriate component of $Pic(X)^m$.
- $\begin{array}{l} \bullet \ \, \text{Statement} \ C(m) \colon \ \, If \ \, l_1 \geq m-2, \ \, l_2 \geq 1, \ \, and, \ \, if \ \, m \geq 3, \ \, l_3 \geq m-1, \ \, ..., \ \, l_m \geq m-1, \ \, then \ \, K(L_1 \otimes L_2, L_3, ..., L_m) = \sum_{P \in \hat{X}} K(L_1 \otimes P, L_3, ..., L_m) \cdot H^0(L_2 \otimes P^{-1}). \\ \bullet \ \, \text{Statement} \ \, D(m) \colon \ \, Let \ \, l_1 \geq 2m-1, \ \, l_2 \geq 1, \ \, and, \ \, if \ \, m \geq 3, \ \, l_3 \geq m, \ \, ..., \ \, l_m \geq m \end{array}$
- Statement D(m): Let $l_1 \geq 2m-1$, $l_2 \geq 1$, and, if $m \geq 3$, $l_3 \geq m$, ..., $l_m \geq m$ and suppose the family of vector spaces $K(L_1 \otimes P, L_3, ..., L_m)$, $P \in \hat{X}$, forms a vector bundle on \hat{X} , we call the corresponding sheaf \mathcal{F}_{m-1} ; then we have
 - i) an isomorphism

$$K(L_1 \otimes L_2, L_3, ..., L_m)^{\vee} = H^0(\hat{X}, (\mathcal{F}_{m-1} \otimes \pi_{\hat{X}_*}(\pi_X^* L_2 \otimes \mathcal{P}^{-1}))^{\vee}),$$

ii)
$$H^{i}(\hat{X}, (\mathcal{F}_{m-1} \otimes \pi_{\hat{X}_{*}}(\pi_{X}^{*}L_{2} \otimes \mathcal{P}^{-1}))^{\vee}) = 0 \text{ if } i \geq 1.$$

We know that A(3), B(1), B(2), D(2) are true (A(3) is true by Lemma 16, B(2) by Lemma 15, D(2) by Proposition 11).

We will prove the following four implications:

- A(m-1) and $B(m-2) \Rightarrow B(m-1)$ for $m \ge 3$.
- A(m-1), B(m-2) and $D(m-1) \Rightarrow D(m)$ for $m \ge 4$ and B(1) and $D(2) \Rightarrow D(3)$.
 - A(m-1), B(m-2) and $D(m-1) \Rightarrow C(m)$ for $m \ge 3$.
 - $C(m) \Rightarrow A(m)$ for m > 3.

By the second implication also D(3) holds; using the four implications, one can prove by induction that A(m), B(m-1) and D(m) are true for $m \geq 3$ and conclude.

Thus let us prove the four implications.

- A(m-1) and $B(m-2) \Rightarrow B(m-1)$ for $m \ge 3$: obvious.
- A(m-1), B(m-2) and $D(m-1) \Rightarrow D(m)$ for $m \ge 4$ and B(1) and $D(2) \Rightarrow D(3)$; it can be proved in an analogous way as Proposition 9 in [Ke]; more precisely:

consider line bundles $L_1, ..., L_m$ with the hypotheses of D(m), thus $l_1 \geq 2m - 1$, $l_2 \geq 1$, and, if $m \geq 3$, $l_3 \geq m$, ..., $l_m \geq m$;

Let $m \ge 4$. Since $l_1, l_3, ..., l_m \ge m-2$, by A(m-1) we have the following exact sequence:

$$0 \longrightarrow K(L_1 \otimes P, L_3, ..., L_m) \otimes H^0(L_2 \otimes P^{-1})$$

$$\longrightarrow K(L_1 \otimes P, L_4, ..., L_m) \otimes H^0(L_3) \otimes H^0(L_2 \otimes P^{-1})$$

$$\longrightarrow K(L_1 \otimes L_3 \otimes P, L_4, ... L_m) \otimes H^0(L_2 \otimes P^{-1}) \longrightarrow 0;$$

observe that also if m=3 this exact sequence holds, by Proposition 8.

The above sequence gives an exact sequence

$$0 \longrightarrow (\mathcal{F}'_{m-2} \otimes \pi_{\hat{X}_{*}}(\pi_{X}^{*}L_{2} \otimes \mathcal{P}^{-1}))^{\vee}$$

$$\longrightarrow (\mathcal{F}_{m-2} \otimes H^{0}(L_{3}) \otimes \pi_{\hat{X}_{*}}(\pi_{X}^{*}L_{2} \otimes \mathcal{P}^{-1}))^{\vee}$$

$$\longrightarrow (\mathcal{F}_{m-1} \otimes \pi_{\hat{X}_{*}}(\pi_{X}^{*}L_{2} \otimes \mathcal{P}^{-1}))^{\vee} \longrightarrow 0,$$

with \mathcal{F}_{m-2} the sheaf corresponding to the bundle whose fibre over $P \in \hat{X}$ is $K(L_1 \otimes P, L_4, ..., L_m)$ and \mathcal{F}'_{m-2} the sheaf corresponding to the bundle whose fibre over $P \in \hat{X}$ is $K(L_1 \otimes L_3 \otimes P, L_4, ..., L_m)$ (they are bundles by B(m-2), in fact, the hypotheses of B(m-2) for them, that is $l_1, l_4, ..., l_m \geq m-2$ and $l_1 + l_3, l_4, ..., l_m \geq m-2$, hold).

We take the cohomology sequence associated to the above exact sequence. By ii) of D(m-1) we have ii) of D(m).

Then we obtain

$$0 \longrightarrow H^{0}((\mathcal{F}'_{m-2} \otimes \pi_{\hat{X} *}(\pi_{X}^{*}L_{2} \otimes \mathcal{P}^{-1}))^{\vee})$$

$$\longrightarrow H^{0}((\mathcal{F}_{m-2} \otimes H^{0}(L_{3}) \otimes \pi_{\hat{X} *}(\pi_{X}^{*}L_{2} \otimes \mathcal{P}^{-1}))^{\vee})$$

$$\longrightarrow H^{0}((\mathcal{F}_{m-1} \otimes \pi_{\hat{X} *}(\pi_{X}^{*}L_{2} \otimes \mathcal{P}^{-1}))^{\vee}) \longrightarrow 0,$$

which is equal to

$$0 \longrightarrow K(L_1 \otimes L_2 \otimes L_3, L_4, ..., L_m)^{\vee}$$

$$\longrightarrow (K(L_1 \otimes L_2, L_4, ..., L_m)H^0(L_3))^{\vee}$$

$$\longrightarrow H^0((\mathcal{F}_{m-1} \otimes \pi_{\hat{X}_*}(\pi_X^* L_2 \otimes \mathcal{P}^{-1}))^{\vee}) \longrightarrow 0,$$

by D(m-1) (we have to verify that $l_1+l_3 \geq 2(m-1)-1$, $l_4,...,l_m \geq m-1$, $l_2 \geq 1$ and $l_1 \geq 2(m-1)-1$ and that it is actually true).

By A(m-1) we have

$$0 \longrightarrow K(L_1 \otimes L_2 \otimes L_3, L_4, ..., L_m)^{\vee}$$
$$\longrightarrow (K(L_1 \otimes L_2, L_4, ..., L_m)H^0(L_3))^{\vee}$$
$$\longrightarrow K(L_1 \otimes L_2, L_3, L_4, ..., L_m)^{\vee} \longrightarrow 0,$$

(to apply A(m-1) we have to verify that $l_1 + l_2 \ge m-2$, $l_3, ..., l_m \ge m-2$ and it is true).

Thus $H^0((\mathcal{F}_{m-1} \otimes \pi_{\hat{X}_*}(\pi_X^*L_2 \otimes \mathcal{P}^{-1}))^{\vee}) = K(L_1 \otimes L_2, L_3, ..., L_m)^{\vee}.$

- A(m-1), B(m-2) and $D(m-1) \Rightarrow C(m)$ for $m \geq 3$: this implication can be proved in an analogous way as in Proposition 12.
- $C(m) \Rightarrow A(m)$ for $m \geq 3$: it can be proved in an analogous way as in Theorem 5 in [Ke]; more precisely, let $l_1, ..., l_m \geq m-1$; write $L_1 = L'_1 \otimes M$ with L'_1

algebraically equivalent to M^{l_1-1} . We have

$$K(L_1 \otimes L_2, L_3, ..., L_m) = \sum_{P \in Pic^0(X)} K(L'_1 \otimes P, L_3, ..., L_m) H^0(M \otimes L_2 \otimes P^{-1})$$

if

$$(*_1)$$
 $l_1 - 1 \ge m - 2, 1 + l_2 \ge 1, l_3, ..., l_m \ge m - 1,$

by C(m).

We have

$$\sum_{P \in Pic^{0}(X)} K(L'_{1} \otimes P, L_{3}, ..., L_{m}) H^{0}(M \otimes L_{2} \otimes P^{-1})$$

$$= \sum_{P \in Pic^{0}(X)} K(L'_{1} \otimes P, L_{3}, ..., L_{m}) H^{0}(M \otimes P^{-1}) H^{0}(L_{2})$$

if

$$(*_2) l_2 \ge 2,$$

by Lemma 15.

We have

$$\sum_{P \in Pic^{0}(X)} K(L'_{1} \otimes P, L_{3}, ..., L_{m}) H^{0}(M \otimes P^{-1}) H^{0}(L_{2}) = K(L_{1}, L_{3}, ..., L_{m}) H^{0}(L_{2})$$

if

$$(*_3)$$
 $l_1 - 1 \ge m - 2, 1 \ge 1, l_3, ..., l_m \ge m - 1$

by C(m).

$$(*_1), (*_2), (*_3)$$
 are true, thus we conclude the proof of this implication.

Now we are ready to prove Theorem 5.

Proof of Theorem 5. For any line bundle L on X we denote $G(L) = \bigoplus_n H^0(L^n)$, a module over the ring $S(L) = SymH^0(L)$.

By Remark 7, we have to prove that $Tor_i^{S(M^{p+1})}(G(M^{p+1}), \mathbf{C})$ is purely of degree i+1 for $1 \leq i \leq p$.

Thus we have to prove that $Tor_i^{S(M^{p+1})}(G(M^{p+1}), \mathbf{C})$ is zero in degree $\geq i+2$ for $1 \leq i \leq p$.

By Lemma 14, it is sufficient to prove that

$$i+2 > i-j+d(T^{j}(G(M^{p+1})))$$

for $0 \le j \le i$ and $1 \le i \le p$, (we use Definition 13), that is,

$$j+1 \ge d(T^j(G(M^{p+1})))$$

for $0 \le j \le i$ and $1 \le i \le p$, that is,

$$j+1 \ge d(T^j(G(M^{p+1})))$$

for $0 \le j \le p$.

Observe that

$$T^{j}(G(M^{p+1})) = \bigoplus_{n} K(M^{(p+1)(n-j)}, \overbrace{M^{p+1}, ..., M^{p+1}}^{J});$$

then using Proposition 17 part a) with m-1=p+1 we have that, if $p \geq j$, then $T^j(G(M^{p+1}))$ is generated by $K(M^{p+1},...,M^{p+1})$ (where M^{p+1} repeats j+1 times), that is by the part of degree n with n-j=1 that is n=j+1; thus $d(T^j(G(M^{p+1})))=j+1$ and we conclude.

Remark 18. Let X_i be a complex torus and L_i a line bundle on X_i for i=1,2; one can easily see that, if L_i satisfies Property N_0 for i=1,2, then the line bundle $\pi_1^*L_1\otimes\pi_2^*L_2$ on $X_1\times X_2$ satisfies Property N_0 and if L_i satisfies Property N_1 for i=1,2, then the line bundle $\pi_1^*L_1\otimes\pi_2^*L_2$ on $X_1\times X_2$ satisfies Property N_1 .

In [Laz1], Lazarsfeld proved that, if X is a complex torus of dimension 2, L is an ample line bundle of type (1,d) on X, |L| has no fixed components and φ_L is birational onto its image, then $\varphi_L(X)$ is projectively normal for d odd ≥ 7 and d even ≥ 14 .

Thus, for instance, if $d \in \mathbf{N}$ is even and ≥ 14 , one can deduce from Theorem 5 and Lazarsfeld's Theorem that, if $(X, c_1(L))$ is generic in the moduli space of polarized abelian threefolds of type (2,4,2d), the line bundle L on the complex torus X satisfies Property N_1 ; in fact, one can consider an elliptic curve E with an ample line bundle A of type (4) and an abelian surface S with a very ample line bundle M of type (1,d) satisfying the hypotheses of Lazarsfeld's Theorem (it exists by Reider's Theorem, which claims that, if M is an ample line bundle of type (1,d) with $d \geq 5$ on a complex torus X of dimension 2, then M is very ample if and only if there is no elliptic curve C on X with $(C \cdot L) = 2$; thus generically an ample line bundle of type (1,d) with $d \geq 5$ on a complex torus X of dimension 2 is very ample; see [Re] or [L-B] Chapter 10, §4); the line bundle A satisfies Property N_1 by Theorem 1 and the line bundle M^2 satisfies Property N_1 by Lazarsfeld's Theorem and Theorem 5; thus, considering the product $(E, A) \times (S, M^2)$, we conclude.

More generally, one can prove analogously the following statement: let $d_i \in \mathbf{N}$ $i=1,...,g,\ d_i|d_{i+1},\ 1< s+1\le t< g,\ d_1=...=d_s=1,\ d_{s+1},...,d_t\ge 2,$ $d_{t+1},...,d_g\in\{d\in\mathbf{N}|\ d\ge 7\ odd\ or\ d\ge 14\ even\};$ if $g-t\ge s$, then, if $(X,c_1(L))$ is generic in the moduli space of polarized abelian varieties of type $(2d_1,....,2d_g)$, the line bundle L on the complex torus X satisfies Property N_1 .

Remark 19. One can conjecture that, if M is an ample line bundle on a complex torus X and M^s satisfies Property N_k , then M^{s+p} satisfies Property N_{k+p} .

Observe that for s=3 and k=0 this is Lazarsfeld's conjecture and for s=1 and k=0 this is Theorem 5.

ACKNOWLEDGMENTS

I thank Professor F. Catanese for some useful discussions.

References

- [E-L] L. Ein R. Lazarsfeld, Syzygies and Koszul cohomology of smooth projective varieties of arbitrary dimension, Invent. Math. 111 (1993) no. 1, 51-67. MR 93m:13006
- [Gr1] M. Green, Koszul cohomology and the geometry of projective varieties I, II, J. Differential Geom. 19 (1984), 125–171; J. Differential Geom. 20 (1984), 279-289. MR 85e:14022; MR 86j:14011
- [Gr2] M. Green, Koszul cohomology and geometry, in: (M. Cornalba et al. eds), Lectures on Riemann Surfaces, World Scientific Press (1989). MR 91k:14012
- [G-L] M. Green and R. Lazarsfeld, On the projective normality of complete linear series on an algebraic curve, Invent. Math. 83 (1986), 73-90. MR 87g:14022

- [Ha] R. Hartshorne, Algebraic Geometry, Grad. Texts Math. 52, Springer-Verlag, Berlin-Heidelberg-New York, 1977. MR 57:3116
- [Ke] G. Kempf, Projective cooridinate rings of abelian varieties, in: Algebraic Analysis, Geometry and Number Theory, edited by I.J. Igusa, The John Hopkins Press (1989), 225-236. MR 98m:14047
- [Ko] S. Koizumi, Theta relations and projective normality of abelian varieties, Amer. J. Math. 98 (1976), 865-889. MR 58:702
- [L-B] H. Lange and Ch. Birkenhake, Complex Abelian Varieties, Springer-Verlag, 1992. MR 94j:14001
- [Laz1] R. Lazarsfeld, Projectivité normale des surfaces abéliannes, redigé par O. Debarre. prépublication No. 14 Europroj - C.I.M.P.A., Nice, 1990.
- [Laz2] R. Lazarsfeld, A sampling of vector bundle techniques in the study of linear series, in: (M. Cornalba et al. (eds), Lectures on Riemann Surfaces, World Scientific Press (1989), 500-559. MR 92f:14006
- [Mum1] D. Mumford, Varieties defined by quadratic equations in: Questioni sulle varietà algebriche, Corsi C.I.M.E., Edizioni Cremonese, Roma, (1969), 29-100. MR 44:209
- [Mum2] D. Mumford, On equations defining abelian varieties, Invent. Math. 1 (1966), 287-354.
 MR 34:4269
- [Re] I. Reider, Vector bundles of rank 2 and linear systems on algebraic surfaces, Ann. of Math., 127 (1988), 309-316. MR 89e:14038
- [Se] T. Sekiguchi, On normal generation by a line bundle on an abelian variety, Proc. Japan Acad. 54, Ser A (1978), 185-188. MR 80c:14026

DIPARTIMENTO DI MATEMATICA, UNIVERSITÀ DI PISA, VIA F. BUONARROTI 2, PISA (PI) C.A.P. 56127, Italia

 $E ext{-}mail\ address: rubei@mail.dm.unipi.it}$